Why fly the extra mile? Latitudinal trend in migratory fuel deposition rate as driver of trans‐equatorial long‐distance migration
نویسندگان
چکیده
Trans-equatorial long-distance migrations of high-latitude breeding animals have been attributed to narrow ecological niche widths. We suggest an alternative hypothesis postulating that trans-equatorial migrations result from a possible increase in the rate at which body stores to fuel migration are deposited with absolute latitude; that is, longer, migrations away from the breeding grounds surpassing the equator may actually enhance fueling rates on the nonbreeding grounds and therewith the chance of a successful, speedy and timely migration back to the breeding grounds. To this end, we first sought to confirm the existence of a latitudinal trend in fuel deposition rate in a global data set of free-living migratory shorebirds and investigated the potential factors causing this trend. We next tested two predictions on how this trend is expected to impact the migratory itineraries on northward migration under the time-minimization hypothesis, using 56 tracks of high-latitude breeding shorebirds migrating along the East Asian-Australasian Flyway. We found a strong positive effect of latitude on fuel deposition rate, which most likely relates to latitudinal variations in primary productivity and available daily foraging time. We next confirmed the resulting predictions that (1) when flying from a stopover site toward the equator, migrants use long jumps that will take them to an equivalent or higher latitude at the opposite hemisphere; and (2) that from here onward, migrants will use small steps, basically fueling only enough to make it to the next suitable staging site. These findings may explain why migrants migrate "the extra mile" across the equator during the nonbreeding season in search of better fueling conditions, ultimately providing secure and fast return migrations to the breeding grounds in the opposite hemisphere.
منابع مشابه
Do Seabirds Differ from Other Migrants in Their Travel Arrangements? On Route Strategies of Cory’s Shearwater during Its Trans-Equatorial Journey
Long-distance migrants have developed diverse strategies to deal with the challenges imposed by their annual journeys. These are relatively well studied in some avian groups, such as passerines, shorebirds and raptors. In contrast, few studies have addressed the migratory behaviour of pelagic birds in the light of current theories of optimal migration. Using a dataset of 100 complete migratory ...
متن کاملFuelling decisions in migratory birds: geomagnetic cues override the seasonal effect.
Recent evaluations of both temporal and spatial precision in bird migration have called for external cues in addition to the inherited programme defining the migratory journey in terms of direction, distance and fuelling behaviour along the route. We used juvenile European robins (Erithacus rubecula) to study whether geomagnetic cues affect fuel deposition in a medium-distance migrant by simula...
متن کاملMagnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia).
Bird migration requires high energy expenditure, and long-distance migrants accumulate fat for use as fuel during stopovers throughout their journey. Recent studies have shown that long-distance migratory birds, besides accumulating fat for use as fuel, also show adaptive phenotypic flexibility in several organs during migration. The migratory routes of many songbirds include stretches of sea a...
متن کاملInformation from the geomagnetic field triggers a reduced adrenocortical response in a migratory bird.
Long-distance migrants regularly pass ecological barriers, like the Sahara desert, where extensive fuel loads are necessary for a successful crossing. A central question is how inexperienced migrants know when to put on extensive fuel loads. Beside the endogenous rhythm, external cues have been suggested to be important. Geomagnetic information has been shown to trigger changes in foraging beha...
متن کاملGreat flights by great snipes: long and fast non-stop migration over benign habitats.
Migratory land birds perform extreme endurance flights when crossing ecological barriers, such as deserts, oceans and ice-caps. When travelling over benign areas, birds are expected to migrate by shorter flight steps, since carrying the heavy fuel loads needed for long non-stop flights comes at considerable cost. Here, we show that great snipes Gallinago media made long and fast non-stop flight...
متن کامل